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Abstract

The stochastic multi-path Traveling Salesman Problem aims at finding the ex-
pected minimum-cost Hamiltonian tour in a network characterized by the presence
of different paths between each pair of nodes, given that a random travel cost with an
unknown probability distribution is associated with each of these paths. When the
path travel costs are independent and identically distributed, previous works have
proved that this problem can be deterministically approximated. Such an approxi-
mation has been shown to be of good quality in terms of estimation of an optimal
solution with respect to consolidated approaches such as Stochastic Programming
with recourse, totally overcoming the computational burden of solving enormous
programs exploded by the scenarios considered. Nevertheless, in real settings, the
hypothesis about the independence among the path travel costs is far to be reason-
able. It is well-known, in fact, that traffic congestion affects travel costs and creates
dependence among them. Then the independence assumption for the travel costs
does not hold anymore. In this paper we show that the independence assumption can
be relaxed and a deterministic approximation of the stochastic multi-path Traveling
Salesman Problem by assuming just asymptotically independent travel costs can be
derived. We also show that this deterministic approximation has strong operational
implications because it allows to deal with realistic traffic models. Computational
tests on extensive sets of random and realistic instances show very good efficiency
and accuracy of the deterministic approximation.

Keywords: Traveling Salesman Problem, stochastic travel costs, asymptotic
independence, deterministic approximation.

1 Introduction

Due to its theoretical interest and wide applicability, the Traveling Salesman Problem
(TSP) is undoubtedly one of the most studied problems in combinatorial optimization.
Several logistics and routing problems, as well as other combinatorial problems (such as
job scheduling), can be modeled as a TSP or contain the TSP as a critical sub-problem. In
the classical TSP version, travel costs are deterministically known a priori and associated
to arcs representing a unique way to go from one node to another (in general, a shortest
path between the two nodes).

*Corresponding author: daniele.manerba@polito.it
Other e-mail addresses: edoardo.fadda@polito.it (E. Fadda); lohic.fotiotiotsop@polito.it (L. Fotio Tiot-
sop); roberto.tadei@polito.it (R. Tadei).
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However, in real routing applications uncertainty deriving by many factors (accidents,
traffic congestion, bad weather conditions, etc.) may strongly affect travel costs. Fur-
thermore, the decision maker can often choose among different travel paths between the
same pair of nodes, as it commonly happens in multi-modal transportation networks.
The stochastic multi-path Traveling Salesman Problem (smpTSP ), introduced in Tadei,
Perboli, and Perfetti (2014), addresses these two features simultaneously. The authors
showed that, despite of the increase in the complexity of the problem, the savings ob-
tained by explicitly incorporating the stochasticity into a multi-path TSP strongly justify
the effort. Unfortunately, the time needed to solve the smpTSP increases exponentially
with the problem size and the number of the considered scenarios. Hence, a deterministic
approximation has been developed to solve real-life size instances. In Maggioni, Perboli,
and Tadei (2014), the same approximation is applied to a City Logistics real application
in which routing instances from the literature have been extended to incorporate real data
collected from a sensor network. This approximation, as many other methods existing
in the literature for similar problems (cfr. Section 2), assumes that travel cost oscilla-
tions are independent and identically distributed (i.i.d.). It is well-known that in real
settings network travel costs are far from being independent, in particular under network
congestion, where the time delay is propagated through arcs.

For this reason, in this paper we investigate a smpTSP variant called stochastic multi-
path Travelling Salesman Problem with dependent travel costs (smpTSPdc), in which
travel cost oscillations are still assumed to be identically distributed but just asymptoti-
cally independent.

The contribution of this work is manifold. First, to the best of our knowledge, we
address a TSP problem taking into account both multi-path networks and dependence of
the travel cost oscillations for the first time. As already said, not the independence but
just the asymptotic independence is assumed for that random oscillations. Second, we
show that this assumption is not too restrictive in real applications and actually allow to
incorporate into the problem realistic traffic models based on the well-known Wardrop’s
traffic equilibrium principle (Wardrop 1952). Third, we formally prove that a deterministic
approximation along the lines of the one already proposed in Tadei, Perboli, and Perfetti
(2014) can be still derived by using the asymptotic theory of extreme values (Galambos
1978).

We would like to stress the fact that this new theoretical result is not actually problem-
dependent and therefore can be generalized and applied to solve other similar optimization
problems under uncertainty. Finally, our deterministic approximation provides a powerful
and quite accurate decision support tool to deal with the smpTSPdc. Its quality and
efficiency are assessed through extensive sets of computational experiments, in which
both random networks and realistic traffic models are considered.

The remainder of this paper is organized as follows. In Section 2, we briefly review the
literature available on the stochastic TSP and we point out some common assumptions.
In Section 3, we present the mathematical model of the problem. In Section 4, we discuss
the existing links between the Wardrop’s traffic equilibrium principle and the asymptotic
independence of the travel costs of a network. In Section 5, we prove our main results
enabling us to develop a deterministic approximation of the smpTSPdc. Finally, in Sec-
tion 6 we present the performance of the proposed approximation by means of several
numerical examples. Section 7 gives conclusions of the work and sketch some possible
future investigations.
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2 Literature review

The Traveling Salesman Problem (TSP) is one of the most well-known NP-complete
combinatorial optimization problems. It appears in many practical applications, either
directly or as a sub-problem. Even if many excellent books devoted to the TSP have been
published in the past (Lawler et al. 1985, Reinelt 1994, Gutin and Punnen 2002), the
problem continues to arise considerable interest among researchers. Consequently, several
different generalizations or versions of the problem have appeared in the literature. Vehicle
Routing (Toth and Vigo 2014), Orienteering (Vansteenwegen, Souffriau, and Oudheusden
2011), and Travelling Purchaser (Manerba, Mansini, and Riera-Ledesma 2017) problems
all belong to this broad class. Most of these routing problems have been also addressed
in their stochastic counterpart (see, e.g., Kenyon and Morton 2003, Campbell, Gendreau,
and Thomas 2011, Beraldi et al. 2017).

Of particular importance the work of Kirkpatrick and Toulouse (1985) that introduces
the stochastic version of the TSP. A TSP model is said to be stochastic if at least one
of its components is assumed to be a random variable. The most traditional approach
adopted to solve the stochastic TSP is to assume that all the random variables considered
in the problem are i.i.d. with a given distribution. For example, in Carraway, Morin, and
Moskowit (1989), Kao (1978), Sniedovich (1981), Huang et al. (2018), the authors study
the TSP with independent and normally distributed arc costs. However, the restrictive
assumptions of those problems are not sufficient to ensure that deterministic methods
work in the stochastic setting, as it is the case for the Shortest Path Problem under an
exponential probability distribution of the costs (see Eiger, Mirchandani, and Soroush
1985).

In other papers (e.g. Wästlund 2010, Mezard and Parisi 1986), the authors approach
the stochastic TSP by means of Statistical Mechanics tools such as the mean field ap-
proximation and the replica and cavity methods. In all previous works, the arc costs
are considered to be i.i.d. uniformly or exponentially. Other important studies consider
variants of the stochastic TSP problem. For example, in Campbell and Thomas (2008)
the authors present two recourse problems and one chance constrained model formalizing
the stochastic TSP where there is a deadline associated with each node.

As one may expect, the results derived in all the aforementioned papers are strongly
related to the properties of the underlying distribution. Instead, in many real applications,
travel costs are determined by very complex mechanisms and thus a precise derivation
of the distribution that describes the variations of the arc costs is a difficult, or even
impossible, task. Nevertheless, in the literature, there are papers where the authors
overcome this problem. For example, in Toriello, William, and Poremba (2013), the
authors present and study a dynamic stochastic model of the TSP in which the realizations
of the random costs vector connecting a single node to the others is known only when
the salesman is about to leave that particular node. They show that, regardless of the
distribution, if the costs are assumed to be independent with known expected values and
supports, the problem can be formulated as a dynamic programming problem solvable
by approximating it through a Linear Programming (LP) model. Another paper that
considers a wide class of distributions is Tadei, Perboli, and Perfetti (2014). In this
work, the authors prove that, if the random costs are i.i.d. according to a probability
distribution belonging to the Gumbel distribution domain of attraction, it is possible to
derive an asymptotic approximation of the expected minimum Hamiltonian tour by using
the extreme value theory.

Despite the fact that the above papers propose approaches that allow to consider
different types of distributions, the i.i.d. assumption on the random arc costs makes them
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not applicable in many real situations. Recently, a large number of papers have studied
both spatial and temporal correlation among travel times in real-life road networks (Fan,
Kalaba, and Moore 2005, Samaranayake, Blandin, and Bayen 2012, Chen et al. 2014).
They found that real networks have strongly dependent arc costs. This happens, for
example, when vehicles are prone to delays due to rush hours, road works, accidents,
or generally speaking when the traffic is congested. Unfortunately, the vehicle routing
literature is still lacking in considering both stochastic and dependent costs. Only in
Letchford and Nasiri (2015), the authors study a Steiner TSP with stochastic correlated
costs and find a Pareto frontier through integer programming techniques.

In this work, we consider stochastic and dependent costs and show that just an asymp-
totic independence among random travel costs is required to derive a good deterministic
approximation and justify the use of realistic traffic models.

The mathematical description of flow principles in real traffic networks is an active
and demanding field of research. Since the topic is not central in our discussion, we just
recall one of the most known results in the field, i.e. the first Wardrop’s traffic equilibrium
principle (Wardrop 1952, Wardrop and Whitehead 1952). That principle states that at
the equilibrium no single driver can unilaterally reduce his/her travel cost by shifting to
another route. In other words, the traffic tends to be distributed such that all alternative
paths between two nodes show the same cost. Since its introduction in the context of road
traffic research, transportation planners have been developed Wardrop’s equilibrium-based
models to predict commuters decisions in real-life networks. Some models have been and
are still used today to evaluate alternative future scenarios and to plan future actions on
the networks. Other models, instead, describe how the traffic flow increases with respect
to the traffic conditions, such as the U.S. Bureau of Public Roads (BPR) function (U.S.
Department of Commerce, Bureau of Public Roads 1964). We are going to consider this
last model in order to show how random dependencies affect the traffic network.

3 Problem definition and mathematical formulation

Let us consider:

� G = (I, E): directed complete graph;

� I: node set;

� E = {(i, j) | i, j ∈ I, i 6= j}: arc set;

� Pij: path set for arc (i, j) ∈ E ;

� ω: random variable belonging to the probability space (Ω,F ,P), where Ω is the set
of all possible outcomes, F is a σ-algebra on Ω, and P is a probability function;

� Cp
ij(ω): stochastic travel cost for arc (i, j) ∈ E on path p ∈ Pij;

� cpij: deterministic travel cost for arc (i, j) ∈ E on path p ∈ Pij;

� Θp
ij(ω): random oscillation of the deterministic travel cost cpij for arc (i, j) ∈ E on

path p ∈ Pij.

We assume
Cp
ij(ω) := cpij + Θp

ij(ω), (i, j) ∈ E , p ∈ Pij. (1)
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The stochastic multi-path Traveling Salesman Problem (smpTSP) aims at finding the
expected minimum-cost Hamiltonian tour in G and deciding which path must be used to
travel between each pair of nodes in that tour.

In the following, we propose a two-stage Stochastic Programming (SP) formulation
with recourse for the smpTSP. Let us consider a binary variable yij, (i, j) ∈ E , taking
value 1 if node j is visited directly after node i, and 0 otherwise, and a binary variable xpij,
(i, j) ∈ E and p ∈ Pij, taking value 1 if path p is selected for travelling across arc (i, j), and
0 otherwise. The variables yij are the first-stage variables deciding which arcs compose
the Hamiltonian tour. Instead, the xpij are the second-stage recourse variables modeling
the decision on which path to select among each pair of nodes (e.g., which transport mode
must be used) in the Hamiltonian tour decided at the first stage.

The smpTSP is defined as follows

min
x,y

EP

 ∑
(i,j)∈E

∑
p∈Pij

xpij(ω) Cp
ij(ω)

 (2)

subject to ∑
(i,j)∈E

yij = 1, i ∈ I (3)

∑
(j,i)∈E

yij = 1, j ∈ I (4)

∑
i∈U

∑
j 6∈U

yij ≥ 1, U 6= ∅, U ⊂ I (5)

∑
p∈Pij

xpij(ω) = yij, (i, j) ∈ E (6)

xpij(ω) ∈ {0, 1}, (i, j) ∈ E , p ∈ Pij (7)

yij ∈ {0, 1}, (i, j) ∈ E . (8)

The objective function (2) minimizes the expected total travel cost. Constraints (3) and
(4) are the assignment constraints ensuring that each node is visited once and only once,
while connectivity constraints (5) prevent the formation of sub-tours in the solution.
Constraints (6) link together variables xpij and yij. In particular, when arc (i, j) is not
selected by the first stage (yij = 0), no path belonging to that arc (i, j) can be used. On
the contrary, when arc (i, j) is selected by the first stage (yij = 1), then one and only
one path must be selected for that arc. Finally, (7) and (8) are binary conditions on the
variables.

Please note that the above formulation is slightly different from the one proposed
in Tadei, Perboli, and Perfetti (2014), which included a non-linear objective function.
This new formulation, instead, leads to an Integer Linear Program formulation of the
deterministic equivalent problem (see Section 3.1).

3.1 A Deterministic Equivalent Problem (DEP) formulation

The stochastic model (2)-(8) is nearly impossible to solve because of the difficulty to
calculate the expected value in the objective function as a multi-dimensional integral,
which cannot be solved analytically. A common SP approach to overcome this problem

6



In
te

rn
al

R
ep

or
t

(see, e.g., Wallace and Ziemba 2005) is to discretize the probability distribution of the
random variables, by creating a finite number of possible realizations (called scenarios),
and then to approximate the stochastic model with a deterministic one named indeed
Deterministic Equivalent Problem (DEP).

Hence, in the following, we consider a set S of possible scenarios. Each scenario s ∈ S,
occurring with a probability πs, is associated with a random cost oscillation Θps

ij for each
arc (i, j) ∈ E and path p ∈ Pij. Because πs is a probability, we have

∑
s∈S π

s = 1. The
DEP of the smpTSP can be stated as follows

min
x,y

∑
s∈S

πs
∑

(i,j)∈E

∑
p∈Pij

xpsij C
ps
ij (9)

subject to ∑
(i,j)∈E

yij = 1, i ∈ I (10)

∑
(j,i)∈E

yij = 1, j ∈ I (11)

∑
i∈U

∑
j 6∈U

yij ≥ 1, U 6= ∅, U ⊂ I (12)

∑
p∈Pij

xpsij = yij, (i, j) ∈ E , s ∈ S (13)

xpsij ∈ {0, 1}, (i, j) ∈ E , p ∈ Pij, s ∈ S (14)

yij ∈ {0, 1}, (i, j) ∈ E (15)

where Cps
ij := cpij + Θps

ij for each arc (i, j) ∈ E , path p ∈ Pij, and scenario s ∈ S.
It is worthwhile noticing that model (9)–(15), although deterministic, has some strong

drawbacks. First, it explodes in complexity with the size of S and, therefore, finding an
optimal solution by considering a reasonable number of scenarios can be computationally
intractable. Second, in order to create the scenario set, it is necessary to have a precise
knowledge about the distribution of all the random variables involved.

Our approach will overcome both the above drawbacks. In fact, the complexity of
the deterministic model resulting from our approximation presented in Section 5.2 is
not affected by the number of scenarios, and the knowledge of the random variables
distribution is not necessary.

3.2 The smpTSP with dependent travel costs (smpTSPdc)

As highlighted in Section 2, smpTSP has been always studied assuming that the travel
costs are independent and identically distributed (i.i.d). In this paper, instead, we specif-
ically address a generalization of the smpTSP in which the random variables Θp

ij(ω)

� have an unknown joint probability distribution;

� are just asymptotically independent (more precisely, in this particular case, we are
interested in an asymptotic independence on the left tail of the random cost distri-
butions).
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Definition 1. Let X1 and X2 be two random variables. They are said to be asymptotically
independent on their left tail if

lim
r→−∞

(
P[X1 ≤ r | X2 ≤ r]− P[X1 ≤ r]

)
= 0. (16)

In other words, assuming two random variables to be asymptotically independent on their
left tail means that the probability to have a variation of one variable in its left tail is not
influenced by the knowledge of a variation on the left tail of the other variable.

Relaxing the strong independence assumption allows us to address the traffic conges-
tion effects in real networks, where travel costs are far to be independent.

4 Wardrop’s first principle and asymptotic indepen-

dence of the travel costs

In this section we discuss how requiring the random oscillations to be asymptotically
independent on their left tail (see Def. 1) is not at all a restrictive condition to exhaustively
model the stochastic behavior of the network traffic due to congestion, justifying the
overall approach presented in this paper and the assumptions done in Section 3.2.

Our argumentation is done by using the well-known concept of user equilibrium based
on the Wardrop’s first principle of route choice (Wardrop 1952, Wardrop and Whitehead
1952) and thus proving that travel costs are actually highly correlated but still asymp-
totically independent on their left tail. We recall that the Wardrop’s principle says: “The
traffic arranges itself in congested networks such that all used routes between an origin
and a destination pair have equal and minimum costs, while all unused routes show greater
costs”. This means that, at the equilibrium, each traveler cannot obtain savings in travel
costs by choosing a different path. The Wardrop’s principle basically derives from the
classical Game Theoretic field, and in particular from the Nash’s equilibrium (see, e.g.,
Osborne and Rubinstein 1994).

We start by pointing out the following

Remark 1. In real applications, the support of random travel cost oscillations is such
that the total cost of a path remains non-negative. Hence, for each (i, j) ∈ E, p ∈ Pij, the
random cost oscillation Θp

ij is lower-bounded by −cpij. Thus, we can show the property of
asymptotic independence of the oscillations on the left tail by verifying that, for any pair
of different paths p1, p2 ∈ Pij of any arc (i, j) ∈ E, the following condition holds

lim
r→−cp

1

ij ,t→−c
p2

ij

P[Θp1

ij ≤ r | Θp2

ij ≤ t] = 0. (17)

Now, let us denote by PUij ⊆ Pij the subset of paths used at the equilibrium for arc
(i, j) ∈ E . From the Wardrop’s first principle and Remark 1, if p1, p2 ∈ PUij , then the

relative random costs Cp1s
ij and Cp2s

ij are equal for each scenario s ∈ S, and, consequently

Θp1s
ij −Θp2s

ij = cp
2

ij − c
p1

ij , (i, j) ∈ E . (18)

Equation (18) shows the high correlation which exists among the random cost oscillations.
We now investigate the behavior of such oscillations on the left tail of their joint

distribution. As commonly done in transportation engineering studies, we assume that
the travel cost on a given path increases when the flow of traffic increases on the same
path (see, e.g., U.S. Department of Commerce, Bureau of Public Roads 1964, where the
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cost of each path is evaluated by the Bureau of Public Road function). More precisely,
we assume that there exists an increasing function Hps

ij such that

Cps
ij = Hps

ij (Qps
ij ), (i, j) ∈ E , p ∈ PUij , s ∈ S (19)

in which Qps
ij denotes the actual flow of traffic on path p ∈ PUij under scenario s ∈ S.

Please note that the considered function Hps
ij also depends on the particular conditions of

a specific scenario s, such as bad weather or accidents. We now consider path p2 ∈ PUij
and suppose the event Θp2s

ij ≤ t occurs with t very closed to −cp
2

ij . Path p2 will show a
cost slightly different than 0 and, due to the Wardrop’s first principle, it holds that

Cp2s
ij ≤ Cp1s

ij , p1 ∈ PUij . (20)

This means that new users entering the network and willing to move from node i to node
j would prefer to use path p2 instead of other paths. Consequently, because of (19) the
flow of traffic on p2 will increase and that on the other paths will decrease. This process
will continue until a new equilibrium is reached. However, during all the above process,
it holds that

Cp1s
ij > Cp2s

ij > 0, (i, j) ∈ E , p1 ∈ PUij , s ∈ S. (21)

Thus, the random cost oscillation Θp1s
ij for path p1 ∈ PUij is not expected to assume a

value close to its lower bound −cp
1

ij . This proves that the travel cost oscillations are
asymptotically independent on the left tail of their distribution.

5 Deterministic approximation of the stochastic prob-

lem

To develop the deterministic approximation presented in this section, we consider the
smpTSPdc problem as a discrete choice model where the decision maker will select the
best alternative among a finite set of mutually exclusive ones, i.e., the best path to move
from node i to node j. The approximation works in two main steps. The first in which it
is possible to derive how the costs of the best alternatives are asymptotically distributed,
and the second where an estimator for the travel cost oscillations can be analytically
determined. This approach has been already used in other application domains such
as location, routing, loading, and packing problems (Perboli, Tadei, and Baldi 2012,
Tadei et al. 2012, Perboli, Tadei, and Gobbato 2014). However, the independence of the
stochastic variables has never been relaxed before.

In order to set our approximation, we adopt an optimistic view (i.e., guided by the
objective function of the smpTSPdc) and relax the problem by assuming that we can
choose among all scenarios the one that minimizes the random travel cost oscillations.
More precisely, we define Θ̃p

ij as the minimum random travel cost oscillations Θps
ij among

all scenarios s ∈ S, i.e.

Θ̃p
ij := min

s∈S
Θps
ij , (i, j) ∈ E , p ∈ Pij. (22)

We also define F p
ij(x) as the survival function of Θ̃p

ij, i.e., F p
ij(x) = P[Θ̃p

ij > x].

Remark 2. Since Θp
ij(ω) are asymptotically independent on their left tail, then also Θ̃p

ij

are asymptotically independent on their left tail.
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Now, it is easy to see that, among all alternative paths from node i to node j, the path
showing the lowest cost will be selected in the optimal solution of the smpTSPdc. For the
sake of simplicity and without loss of generality, we assume such path to be unique. We
define Cij(Θ) as the cost of such optimal path for traveling from node i to node j, i.e.

Cij(Θ) := min
p∈Pij

(
cpij + Θ̃p

ij

)
, (i, j) ∈ E (23)

Note that Cij(Θ) is still a random variable since depending on Θ̃p
ij. We call its survival

function
Gij(x) = P[Cij(Θ) > x]. (24)

Obviously, a variable xpij will take value 1 in an optimal solution of the smpTSPdc if and
only if p is the optimal path from i to j and, therefore, variables xpij can be surrogated by
the already existing variables yij. Hence, because of the linearity of the expected value,
problem (2)-(8) becomes

min
y

∑
(i,j)∈E

EP [Cij(Θ)] yij (25)

subject to constraints (3)–(5), and (8).
Unfortunately, the distribution of Cij(Θ) is unknown because the distribution of Θ̃p

ij is
unknown. Thus the expected value in (25) is not solvable. We will provide in the following
Section an asymptotic approximation of the distribution of Cij(Θ), or, equivalently, of its
survival function Gij(x).

5.1 Asymptotic approximation of Gij(x)

Please note that, by subtracting a constant α from all random cost oscillations Θps
ij , the

optimal solution of problem (2)-(8) does not change. In fact, let us denote by

f0 := EP

 ∑
(i,j)∈E

∑
p∈Pij

xpij(ω) ∗
(
cpij + Θp

ij(ω)
)

the original objective function, and by

f := EP

 ∑
(i,j)∈E

∑
p∈Pij

xpij(ω) ∗
(
cpij + Θp

ij(ω)− α
)

the same objective function after the normalization of the cost oscillations. Then, the
following condition holds

f = f0 − α
∑

(i,j)∈E

∑
p∈Pij

xpij(ω) =

= f0 − α
∑

(i,j)∈E

yij =

= f0 − α|E|.

Hence, we can restate (23) as

Cij(Θ) = min
p∈Pij

(cpij + min
s∈S

(Θps
ij − α|S|)), (i, j) ∈ E (26)

where α|S| is chosen equal to the root of the equation

1− F p
ij(x) =

1

|S|
. (27)
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Theorem 1. Let us consider any arc (i, j) ∈ E. If the random cost oscillations Θp
ij of

each path p ∈ Pij are asymptotically independent on their left tail, and if

lim
|S|→+∞

(F p
ij(x+ α|S|))

|S| = exp(−eβx) for some real number β > 0 (28)

then

lim
|S|→+∞

Gij(x) = lim
|S|→+∞

P[Cij(Θ) > x] = lim
|S|→+∞

P
[

min
p∈Pij

(cpij + min
s∈S

(Θps
ij − α|S|)) > x

]
= e−Aije

βx

(29)
where

Aij =
∑
p∈Pij

e−βc
p
ij . (30)

Proof. Let Pij = |Pij| and Fij(x1, x2, . . . , xPij) be the unknown joint survival function of
all the Pij random oscillations associated to the paths connecting node i to node j under
any given scenario s ∈ S, i.e.

Fij(x1, x2, . . . , xPij) = P[
⋂

p=1,2,...,Pij

Θps
ij > xp]. (31)

Using the De Morgan’s laws and the property of the probability over the union of a finite
number of events, it turns out that

Fij(x1, x2, . . . , xPij) = P[
⋂

p=1,2,...,Pij

Θps
ij > xp] =

= 1− P[
⋃

p=1,2,...,Pij

Θps
ij ≤ xp] =

= 1−
Pij∑
k=1

(−1)k+1
∑

{p1,p2,...,pk}∈2Pij

P[Θp1s
ij ≤ x1,Θ

p2s
ij ≤ x2, . . . ,Θ

pks
ij ≤ xk]

(32)

where 2Pij is the power set of Pij, i.e. the set containing all subsets of the set Pij.
Without loss of generality, let us consider two paths p1, p2 ∈ Pij. From Def. 1, it is

easy to see that

lim
x1→−∞,
x2→−∞

P[Θp1s
ij ≤ x1|Θp2s

ij ≤ x2] = 0, s ∈ S (33)

or, equivalently

lim
x1→−∞,
x2→−∞

P[Θp1s
ij ≤ x1,Θ

p2s
ij ≤ x2]

P[Θp2s
ij ≤ x2]

= 0, s ∈ S (34)

Note that Eq. (34) can be generalized as follows

lim
x1→−∞,
x2→−∞

P[Θp1s
ij ≤ x1,Θ

p2s
ij ≤ x2]

P[Θp2s
ij ≤ min(x1, x2)]

= 0, s ∈ S (35)

In fact, when x1 → −∞ and x2 → −∞, it holds that

0 ≤
P[Θp1s

ij ≤ x1,Θ
p2s
ij ≤ x2]

P[Θp2s
ij ≤ min(x1, x2)]

≤
P[Θp1s

ij ≤ min(x1, x2),Θp2s
ij ≤ min(x1, x2)]

P[Θp2s
ij ≤ min(x1, x2)]

→ 0. (36)
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The limit in (35) has the following very important interpretation: when both x1 and

x2 tend to −∞, one has that P[Θp1s
ij ≤ x1,Θ

p2s
ij ≤ x2] → 0. Hence in (32), if x1 →

−∞, x2 → −∞, . . . , xPij → −∞ all probabilities including the intersection of 2 or more
events are negligible. Thus, when x1 → −∞, x2 → −∞, . . . , xPij → −∞,

Fij(x1, x2, . . . , xPij)→ 1 −
∑

p=1,2,...,Pij

P[Θps
ij ≤ xp] (37)

under any scenario s ∈ S.
Due to (26), P[Cij(θ) > x] can be written as a function of |S| as follows

P[Cij(θ) > x] = P[min
p∈Pij

(cpij + min
s∈S

(Θps
ij − α|S|)) > x] =

= P[
⋂
p∈Pij

(cpij + min
s∈S

(Θps
ij − α|S|)) > x] =

= P[
⋂
p∈Pij

(min
s∈S

(Θps
ij − α|S|)) > x− cpij] =

= P[
⋂
p∈Pij

⋂
s∈S

(Θps
ij − α|S|) > x− cpij] =

= P[
⋂
p∈Pij

⋂
s∈S

Θps
ij > x− cpij + α|S|] =

= P[
⋂
s∈S

⋂
p∈Pij

Θps
ij > x− cpij + α|S|] =

=
∏
s∈S

P[
⋂
p∈Pij

Θps
ij > x− cpij + α|S|] =

= [Fij(x− cp
1

ij + α|S|, x− cp
2

ij + α|S|, . . . , x− cp
Pij

ij + α|S|)]
|S| (38)

From the assumption (28) it is easy to see that, when |S| → +∞

F p
ij(x+ α|S|)→ 1, p ∈ Pij (39)

In fact, if F p
ij(x + α|S|) were bounded by any real number a < 1, then (F p

ij(x + α|S|))
|S|

would tend to 0 for any real number x and that would contradict (28).
Using (39) one has that lim|S|→∞(x+ α|S|) = −∞, x ∈ R. Thus, under any scenario

s ∈ S
lim
|S|→∞

(x− cpij) + α|S| = −∞, p ∈ Pij, x ∈ R (40)

Due to (37) and (40), when |S| → +∞

Fij((x1−cp
1

ij )+α|S|, (x2−cp
2

ij )+α|S|, . . . , (xPij−c
pPij

ij )+α|S|)→ 1−
∑
p∈Pij

P[Θps
ij ≤ (xp−cpij)+α|S|]

(41)
Hence, by using (38) and (41), one gets

lim
|S|→+∞

P[Cij(θ) > x] = lim
|S|→+∞

e
|S| log(1−

∑
p∈Pij

P[Θpsij ≤(x−cpij)+α|S|]) (42)

Since (40) implies that lim|S|→+∞ P[Θps
ij ≤ (xp− cpij) +α|S|] = 0, p ∈ Pij, s ∈ S, then (42)

12
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leads to

lim
|S|→+∞

P[Cij(θ) > x] = lim
|S|→+∞

e
−|S|(

∑
p∈Pij

P[Θpsij ≤(x−cpij)+α|S|]) =

= lim
|S|→+∞

(e
−(

∑
p∈Pij

P[Θpsij ≤(x−cpij)+α|S|]))|S| =

= lim
|S|→+∞

∏
p∈Pij

(e−P[Θpsij ≤(x−cpij)+α|S|])|S| =

= lim
|S|→+∞

∏
p∈Pij

(1− P[Θps
ij ≤ (x− cpij) + α|S|]))

|S| =

=
∏
p∈Pij

lim
|S|→+∞

(F p
ij((x− c

p
ij) + α|S|))

|S| (43)

Now, due to (28) and (43), it holds that

lim
|S|→∞

P[Cij(θ) > x] =
∏
p∈Pij

exp(−eβ(x−cpij)) = e−Aije
βx

. (44)

This proves the theorem.

Basically, Theorem 1 states that, if the unknown probability distribution of the stochas-
tic cost oscillations satisfies assumption (28), then the costs asymptotically converge in
distribution to a Gumbel function (double exponential) even if the costs are asymptotically
independent. Note that the expression Aij in (30) represents the so-called accessibility in
the sense of Hansen (1959), which is a measure of “visibility” that the decision maker has
for each arc (i, j) on the entire set of its alternative paths Pij. In turn, this accessibility
depends on a parameter β > 0 that must be calibrated (see Section 6.1) and represents
the dispersion of the alternatives in the decision making process, i.e. the propensity to
choose for an arc among the set of its paths characterized by different random travel
times.

5.1.1 Applicability of Theorem 1.

After having presented, proved, and commented Theorem 1, we want to dedicate a brief
discussion to highlight the vast applicability of the results obtained by showing the mild-
ness of assumption (28) made on the structure of the distribution of the random cost
oscillations.

First, note that assumption (28) can be equivalently rewritten as

lim
|S|→+∞

(F p
ij(

1

β
x+ α|S|))

|S| = exp(−ex)

and thus, for an accurate calibration of β, it just requires the distribution to belong to
the domain of attraction of the Gumbel distribution. This domain constitutes a very
large family of distributions including very common ones as the Normal, the Gumbel, the
Weibull, the Logistic, the Laplace, the Lognormal, and many others (i.e., any distribution
of the form 1− e−P (x), where P (x) is a polynomial function). Hence, (28) can be actually
considered a very mild assumption.

Second, it is important to notice that (28) is a more general assumption with respect
to the one used in Tadei, Perboli, and Perfetti (2014) and in similar approaches already
appeared in the literature, where a more restrictive behaviour on the distribution tails
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was imposed. In particular, the following asymptotic exponential behavior for the left tail
of the distribution F p

ij(x) was required:

lim
y→−∞

1− F p
ij(x+ y)

1− F p
ij(y)

= eβx for some real number β > 0. (45)

We prove in the following Proposition that (28) is a more general assumption than (45).

Proposition 1. Assumption in (45) implies assumption in (28).

Proof. From (27) it holds that lim|S|→+∞ α|S| = −∞. From (45) it turns out that

lim
|S|→+∞

1− F p
ij(x+ α|S|)

1− F p
ij(α|S|)

= eβx. (46)

By using (27), (46) becomes

lim
|S|→+∞

1− F p
ij(x+ α|S|)

1
|S|

= eβx

and, thus

lim
|S|→+∞

F p
ij(x+ α|S|) = lim

|S|→+∞

(
1− eβx

|S|

)
.

Hence

lim
|S|→+∞

(F p
ij(x+ α|S|))

|S| = lim
|S|→+∞

(
1− eβx

|S|

)|S|
= exp(−eβx).

This means that any distribution satisfying (45) also satisfies our assumption. On the
contrary, it is easy to see that some of the already mentioned distributions satisfying (28),
e.g. the Normal and the Lognormal, do not show the behavior expressed in (45).

5.2 Deterministic approximation of smpTSPdc

It is worthwhile noticing that, given the result of Theorem 1, it is also possible to derive for
each arc a Multinomial Logit model for the choice probability of its alternative paths (see
Tadei, Perboli, and Manerba 2018). This could lead to a continuous assignment of paths
to arcs, and to a possible feasible solution of our smpTSPdc through rounding. However,
given the hard feasibility constraints of our problem, we have noticed in preliminary
experiments that this rounding leads to quite bad approximated solutions. Therefore,
we have decided instead to exploit the knowledge of the asymptotic distribution of the
random cost oscillations to calculate their expected value, so to achieve an approximated
model for the problem based only on deterministic parameters.

More precisely, if |S| is large enough, the limit obtained in (44) can be used as the
survival function of costs Cij(Θ) and therefore we can calculate their expected value as
follows

EΘ[Cij(Θ)] =

∫ +∞

−∞
x dP[Cij(θ) ≤ x] = −

∫ +∞

−∞
x dP[Cij(θ) > x] =

∫ +∞

−∞
xe−Aije

x

Aije
xdx

(47)
After some manipulations, the above expected value becomes

EΘ[Cij(Θ)] ≈ − 1

β
(ln(Aij) + γ) (48)
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where γ = −
∫∞

0
log(t)e−tdt ≈ 0.5772 is the Euler constant.

Now, by using (48) and disregarding the constant terms, the following deterministic
approximation of the stochastic problem (2)-(8) is obtained:

min
y
− 1

β

∑
(i,j)∈E

yij ln(Aij) (49)

subject to constraints (3)–(5), and (8).
Note that the deterministic approximation developed allows to reduce the combina-

torial structure of the DEP of our smpTSPdc in formulation (9)–(15) to a common TSP,
overcoming the complexity deriving by the presence of both multiple paths and multiple
scenarios.

6 Computational experiments

In order to assess the performance of the proposed approach, we compare the results
obtained by the Deterministic Approximation (DA) proposed in Section 5.2 with those
of the Deterministic Equivalent Problem (DEP) formulated in (9)–(15) on a large set of
benchmark instances. The DA have been implemented by using MATLAB v9.4 and its
internal integer solver, whereas the DEP have been solved by using Cplex v12.7.1 and
its C++ Concert Technology. In all the experiments, we have considered a discretization
of the probability space in 100 scenarios (|S| = 100). This choice enforces both in-
sample and out-of-sample stability of the problem (see Kaut et al. 2007). We run all the
experiments on an Intel Core I7 2.5 GHz workstation with 16GB RAM, running Windows
10 operating system.

In Section 6.1 we propose an empirical way to calibrate the parameter β, needed to
calculate our deterministic approximation. In Section 6.2 we discuss the generation of the
instances. In Section 6.3 the computational results are given.

6.1 Calibration of parameter β

As already said, the DA depends on the parameter β that needs to be calibrated. In all
the experiments, the calibration of β is done as in Tadei, Perboli, and Perfetti (2014).
More precisely, let us consider the standard Gumbel distribution exp(−e−x). If an
approximation error of 2h is accepted, then exp(−e−x) = 1 ⇐⇒ x = 6.08 and
exp(−e−x) = 0 ⇐⇒ x = −1.76. Hence, if the support of the unknown distribution
of the cost oscillations is [m, M ], then

β(m− ζ) = −1.76 (50)

and
β(M − ζ) = 6.08 (51)

where ζ is the mode of the Gumbel with distribution exp(e−β(x−ζ)). Then, by subtracting
(50) from (51), we obtain

β =
7.84

M −m
. (52)

In our experiments, m is the minimum arc cost of the considered instance while M :=
2 |P|max∗fdet|I| , where |P|max = max(i,j)∈E |Pij|, is the number of paths considered between
each pair of nodes and fdet is the value of a deterministic TSP obtained by choosing for each
arc that of minimum cost. In this way, we keep M to be proportional to the magnitude
of the average cost oscillation in the final solution (fdet/|I|), without considering paths
with extreme costs.
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6.2 Benchmark instances

To better assess the quality and the efficiency of our approximation, we generate two
different sets of instances. In the first set (presented in Section 6.2.1) we use well-known
distributions for modeling the random cost oscillations, while in the second set (presented
in Section 6.2.2) we use a more realistic traffic model.

In both sets, nodes are randomly selected from a database providing the position
of 16,862 Italian locations (http://www.math.uwaterloo.ca/tsp/world/it16862.tsp. Last
access: December 03, 2018) in terms of Cartesian coordinates, and we assume to have the
same number |P| of available paths for each arc of the network, i.e. |P| = |Pij|, (i, j) ∈ E .

6.2.1 Randomly generated instances

In this set of random instances, the deterministic costs cpij are computed as follows cpij :=
τp ∗ dij, where dij is the Euclidean distance between nodes i and j, and τp is randomly
sampled in the interval [1, 3]. We first create 5 different deterministic instances for each
combination of number of nodes (|I| = {50, 100}) and number of paths (|P| = {3, 4, 5}),
i.e. 30 deterministic instances in total. For each deterministic instance, the random cost
oscillations Θps

ij , (i, j) ∈ E , p ∈ Pij, s ∈ S are generated according to 5 different marginal
distributions (Gumbel, Normal, Logistic, Laplace, and Uniform). The set of randomly
generated instances is therefore composed by 150 instances. We want to highlight since
now that the Uniform distribution does not satisfy condition (28), needed to apply our
deterministic approximation. Nevertheless, since in real settings it is not always possible
to derive a precise knowledge in terms of distribution of the observed scenarios, we want
to test the approximation also for distributions that would not fulfill the assumptions of
our theory.

To combine the aforementioned marginal distributions into a multivariate one, we use
the Normal copula (see Nelsen 2006). This simulates the dependency structure of the
random oscillations and maintains the asymptotic independence property. In all cases,
the support of the distribution of the random cost oscillation Θps

ij has been truncated to
[−0.8cpij, 0.8cpij] in order to consider significant changes in costs.

6.2.2 Instances based on a realistic traffic model.

In this set of realistic instances, the deterministic costs cpij has been assumed to be propor-
tional to the time required to travel from node i to j on path p, thus cpij := c0 ∗ tpij, where
c0 is a constant value representing the cost per unit of time, and tpij is the time required
to travel from i to j in normal traffic condition (i.e., without congestion) on path p. For
each path p ∈ Pij, let qpij, v

p
ij, and lpij denote the capacity (i.e., the maximum traffic flow

that such path can support), the average speed, and the length of path p, respectively. In
order to model a network containing both high capacity paths (main roads or highways)
and low capacity ones (secondary roads), qpij are randomly generated from a Uniform dis-
tribution with support in Q1 = [70, 100] for half of the paths and in Q2 = [20, 50] for the
other half. The average speed vpij on any path p ∈ Pij is assigned according to the type
of the path p. More precisely, we set vpij = 100 if qpij ∈ Q1 and vpij = 40 if qpij ∈ Q2. The
length lpij is obtained by uniformly sampling a value in the interval [dij, 3*dij]. The time
tpij is then computed as tpij = lpij/v

p
ij.

For each deterministic instance, the random costs oscillations Θps
ij are obtained by

using the following formula

Θps
ij = cpij

(
0.15

(
Qps
ij (λij)

qpij

)3+λij

+ δpsij

)
(53)
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where Qps
ij (λij) is the actual traffic flow on path p ∈ Pij under scenario s ∈ S and δpsij is

an additive term generated from a standard Normal distribution truncated in [−0.3, 0.3].
δpsij models the effect of exogenous events (e.g., weather conditions and road works) that
may affect the travel cost except the traffic flow. Note that equation (53) is based on the
already presented Bureau of Public Road (BPR) model (U.S. Department of Commerce,
Bureau of Public Roads 1964), which is widely used and consolidated in transportation
engineering. More precisely, the function has been slightly modified by including a positive
real parameter λij that enables us to modulate the traffic flow on a specific arc (i, j) and
therefore to simulate different traffic conditions.

The flows Qps
ij (λij) are computed as follows. First, under each scenario s ∈ S, the

total flow of traffic Qs
ij is randomly generated in the interval [0.3

∑
p∈Pij q

p
ij, 0.7

∑
p∈Pij q

p
ij]

for low-congested networks, and in [0.7
∑

p∈Pij q
p
ij,
∑

p∈Pij q
p
ij] for high-congested networks.

Second, the flows Qps
ij (λij) for each path p ∈ Pij are then computed as Qps

ij (λij) := Qs
ij∗π

p
ij,

where πpij denotes the probability of choosing path p among all paths available and can
be calculated according to the following Logit model

πpij =
exp(−λij ∗ (lpij − loij))∑

p∈Pij exp(−λij ∗ (lpij − loij))
(54)

where loij denotes the length of the shortest path poij between node i and j. It is worth
noting that the costs obtained on the paths by this simulation are necessary dependent
because

∑
p∈Pij Q

ps
ij (λij) = Qs

ij. The rationale behind the above formula is the following.
Let assume that a user has to make a choice among all paths linking nodes i and j. It
is obvious that under normal traffic conditions (no congestion) the user would choose
with high probability the shortest path poij. Furthermore, the longer a path is the smaller
the chance to be selected. Instead, under traffic congestion, the shortest path is surely
overused. Then, users try to minimize their travel time by evaluating the possibility to use
alternative paths and thus the traffic tends to be redistributed uniformly among all paths
(Wardrop principle). These aspects are captured by the Logit model in (54). In fact,
when λij is close to 0 (high-congested network), the probability of choosing path p ∈ Pij
tends to 1

|Pij | for all paths. Instead, for large values of λij (low-congested network), the

probability tends to 0 for all path p ∈ Pij \ poij and to 1 if p = poij.
Eventually, we have generated a total of 144 instances. More precisely, for each com-

bination of |I| = {50, 100} number of nodes and |P| = {3, 4, 5} number of paths, we have
created

� 10 instances (representing high-congested networks) where λij is randomly selected
in the interval [0.1, 2], (i, j) ∈ E ;

� 10 instances (representing low-congested networks) where λij is randomly selected
in the interval [8, 20], (i, j) ∈ E ;

� 4 instances (representing a mixed situation showing both congested and not con-
gested paths) where λij is randomly selected in the interval [0.1, 20], (i, j) ∈ E .

6.3 Results and analysis

In order to quantify the performance of the proposed methodology, we run the DA and the
DEP (here used as a benchmark) approaches on each generated instance and calculated
the percentage gaps f% and t% in terms of objective function value of the returned
solution and computational time, i.e.

f% := 100 ∗ fDEP − fDA
fDEP
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where fDA and fDEP are the values of the objective function of the solution computed by
using the proposed DA and by solving DEP in (9)–(15) through Cplex within a threshold
time of 7200 seconds (2 hours), while

t% := 100 ∗ tDEP − tDA
tDEP

where tDA and tDEP are the time required to solve the DA and the DEP, respectively.
We precise that the value of fDA is not obtained directly from the objective function in

(49), which only represents an approximation of the overall decision process cost. Instead,
a more reasonable evaluation of the real objective function can be obtained, for each
instance, through the following steps

1. Optimally solve the model in (49) and derive, for each arc (i, j) ∈ E , the values y∗ij
of the variables yij in the optimal solution, which represent the first-stage decisions;

2. For each scenario s ∈ S, solve the DEP (9)–(15) in which the yij variables are fixed
to the values y∗ij found at step 1, calculating the relative objective function f sDA.
Note that, through this variable fixing, the optimization problem actually resorts to
simply computing f sDA :=

∑
(i,j)∈E y

∗
ij minp∈Pij C

ps
ij ;

3. Finally, compute fDA :=
∑

s∈S π
sf sDA.

Basically, fDA represents the expected cost that can be obtained by implementing at
the first stage the decisions suggested by the deterministic problem derived through our
approximation.

Table 1 shows the percentage gaps f% obtained comparing the DA and the DEP
approaches on the 150 instances randomly generated from theoretical distributions. More
precisely, each entry reports the average and the standard deviation (in square brackets)
of the percentage gaps f% among the five random instances generated for each number
of nodes, number of paths, and type of distribution. The results observed are quite good

Instance Distribution

|I| |P| Gumbel Laplace Logistic Normal Uniform avg:

50 3 0.23 [0.17] 2.12 [2.44] 0.92 [1.08] 1.09 [0.93] 2.14 [2.85] 1.30 [1.49]
4 0.58 [0.32] 0.53 [0.57] 0.61 [0.64] 2.00 [2.29] 2.58 [0.93] 1.26 [0.95]
5 1.62 [3.19] 0.66 [0.45] 0.31 [0.68] 0.66 [0.75] 1.08 [0.76] 0.87 [1.17]

avg: 0.81 [1.23] 1.10 [1.16] 0.62 [0.80] 1.25 [1.32] 1.93 [1.52] 1.14 [1.20]

100 3 1.76 [2.71] 0.69 [0.67] 0.71 [0.37] 2.46 [2.25] 2.02 [1.52] 1.53 [1.50]
4 1.26 [0.82] 0.70 [0.49] 1.27 [0.83] 0.62 [0.65] 1.41 [1.16] 1.05 [0.79]
5 0.60 [0.69] 2.58 [1.51] 6.11 [9.25] 2.10 [2.22] 1.52 [0.61] 2.58 [2.86]

avg: 1.21 [1.41] 1.32 [0.89] 2.70 [3.48] 1.72 [1.71] 1.65 [1.10] 1.72 [1.72]

Table 1: Percentage gaps (f%) obtained for the 150 random generated instances.

in terms of quality. The overall average gaps are 1.14% for all instances with 50 nodes
and 1.72% for those with 100 nodes. The standard deviations reported confirm the good
stability of the approximation. All the average gaps (and deviations) just slightly increase
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by increasing the size of the instances (in terms of nodes or paths) for almost all types of
distribution. The worse behavior can be found for the Logistic distribution, in particular
concerning the largest instances (|I| = 100 and |P| = 5), for which an average gap of
about 6% is observed. In all remaining cases, average gaps never exceed 2.6% and are less
than 1% in almost the half of cases.

A special attention must be put on the results concerning the Uniform distribution.
As already highlighted, even if it does not satisfy assumption (28), we have decided to
include these experiments in order to investigate the behavior of our method when the
distribution of the oscillations is not known. Also in this case, the observed gaps are
very interesting and in line with the other distributions (i.e., 1.93% for |I| = 50 and
1.65% for |I| = 100). This gives to our deterministic approximation an even broader
applicability, since it is expected to provide accurate results for a class of distribution
even larger than the Gumbel domain of attraction (possibly indicating that assumption
(28) is just sufficient but not necessary for the derivation of our results).

The quality of our approximation method has been also tested considering a more
realistic traffic model, which totally disregards any assumption on the resulting empirical
distribution of the costs. The percentage gaps f% obtained comparing the DA and the
DEP approaches on the 144 realistic instances are shown in Table 2. Again, each entry
reports the average and the standard deviation (in square brackets) of the percentage
gaps f% among the random instances generated for each number of nodes, number of
paths, and type of traffic congestion. Also in this case, the results obtained are still good,
also considering the complexity of the underlying problem. The approximation provides
on average a solution differing from the one of the DEP by less than 4.6% for all type
of networks (with reasonable standard deviations). Furthermore, such gaps seem not
increasing as the number of nodes or paths increases, demonstrating again good stability
and scalability of the approach. On the contrary, the approximation works better when
the number of nodes and the number of possible alternatives per arc (paths) are higher.

Instance Type of traffic

|I| |P| Low congestion Mixed situation High congestion avg:

50 3 2.99 [1.61] 7.36 [11.02] 3.98 [2.81] 4.78 [5.15]
4 3.33 [1.78] 3.87 [1.16] 3.92 [2.03] 3.71 [1.65]
5 5.74 [2.13] 2.35 [2.67] 5.58 [2.79] 4.56 [2.53]

avg: 4.02 [1.84] 4.53 [4.95] 4.49 [2.54] 4.35 [3.11]

100 3 2.70 [1.41] 2.16 [0.80] 3.91 [1.91] 2.92 [1.37]
4 3.99 [1.43] 3.46 [1.32] 5.02 [1.18] 4.16 [1.31]
5 4.64 [2.52] 3.07 [1.42] 4.65 [2.40] 4.12 [2.11]

avg: 3.78 [1.78] 2.90 [1.18] 4.53 [1.83] 3.74 [1.60]

Table 2: Percentage gaps (f%) obtained for the 144 realistic instances.

In Table 3, we have summarized the computational times in seconds observed for the
two solution approaches (DA and DEP) on both random generated and realistic instances.
In both cases, we do not show detailed results per type of distribution or type of network
because the differences are not sensible, and mostly depend on the number of nodes. In all
the experiments, the time required to get the solution of DA is definitely negligible with
respect to the time employed to perform the solution of DEP. DEP needs, on average,
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about 800 seconds to solve instances with 50 nodes and approaches the threshold time of
2 hours for the instances with 100 nodes. Instead, DA needs on average less than 7 and
less than 100 seconds to solve instances with 50 and 100 nodes, respectively. We can also
observe that, on average, realistic instances are solved in less time by DA with respect
to random ones. Just about 2 and 30 seconds are needed for solving |I| = 50 and 100
instances, respectively.

Instance Random instances Realistic instances

|I| |P| tDA(s) tDEP (s) tDA(s) tDEP (s)

50 3 7.0 714.7 1.9 722.1
4 5.6 1037.0 1.8 437.4
5 6.0 655.8 2.1 830.0

avg: 6.2 802.5 1.9 663.2

100 3 97.7 6791.1 33.5 6805.1
4 86.9 5930.6 29.2 6670.0
5 104.7 7006.2 24.8 7162.9

avg: 96.4 6576.0 29.1 6879.3

Table 3: Computational times of the two approaches for all the generated instances.

Finally, in Tables 4 and 5 we summarize how good is the compromise offered by DA for
the two main sets of instances, in terms of efficiency and effectiveness. More precisely, we
compare the loss in effectiveness f% and the gain in efficiency t% when using the proposed
DA with respect to DEP. On average, by sacrificing from 1% to 4% of the solution quality,
the approximation allows to gain 2 orders of magnitude in efficiency.

Distribution f% t%

Gumbel 1.01 97.93
Laplace 1.21 98.69
Logistic 1.66 96.98
Normal 1.49 98.10

Uniform 1.79 98.46

avg: 1.43 98.03

Table 4: Loss in effectiveness vs. gain in efficiency of DA with respect to DEP for the
random instances.

7 Conclusions

In this paper, we have studied the stochastic multi-path Traveling Salesman Problem
with dependent random travel costs (smpTSPdc). We have shown that, under a mild
assumption on the distribution of the random cost oscillations and if such oscillations are
just asymptotically independent, a deterministic approximation of the problem can be
derived by using the theory of extreme values. We have also shown that the asymptot-
ically independence assumption on the travel costs is not too restrictive in real network
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Traffic situation f% t%

Low congestion 4.51 99.60
Mixed situation 3.71 99.80

High Congestion 3.90 99.52

avg: 4.12 99.60

Table 5: Loss in effectiveness vs. gain in efficiency of DA with respect to DEP for realistic
instances.

applications. On the contrary, it allows to deal with realistic traffic models such as the
well-known BPR function. Finally, we have tested the behavior of the proposed method-
ology by means of extensive computational experiments on random generated as well as
realistic instances with up to 100 nodes and 5 possible different paths per arc. The deter-
ministic approximation is definitely able to solve the problem with very good compromise
between quality of the solution and overall efficiency with respect to standard equivalent
Stochastic Programming approaches and state-of-the-art solvers. On average, the deter-
ministic approximation can find in less than 100 seconds solutions with 1-4% of gap with
respect to the optimal ones, which need instead hours to be found. We are confident that
such percentages could still persist (or even improve) for instances with larger number of
nodes, paths, and considered scenarios.

Some future research can be outlined. First, encouraged by the very good results
obtained even in those cases where the theoretical assumptions for the derivation of our
approximation do not hold, we want to further investigate possible relaxations of such
assumptions. Moreover, we want to concentrate on finding a way to calibrate the β
parameter which better exploits the instance features. Finally, a time-dependent version
of the problem can be studied and approximated through other very recent developments
on random utility choice models (Tadei, Perboli, and Manerba 2019).
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